pour faire tourner un LLM qui servira a générer les dialogues de mes PNJs, au lieu d'avoir
recours aux services externes et payants de Grok par exemple, quel type de matériel puis-je
utiliser en interne. Je pense aux GPUs AMD qui ont la particularité d'étre bon marché avec
beaucoup de RAM

L'idée d'utiliser des GPU AMD pour un projet de MMO est excellente, surtout pour le rapport
Prix / VRAM. Dans le monde des LLM (Large Language Models), la VRAM est le facteur
limitant numéro 1 : si le modéle ne tient pas dans la mémoire vidéo, il tournera sur le
processeur (CPU) et sera beaucoup trop lent pour des dialogues en temps réel.

Voici comment aborder votre configuration matérielle interne pour 2026 :

1. Pourquoi AMD est un choix malin

Les cartes AMD offrent souvent plus de mémoire pour moins cher que les cartes NVIDIA
équivalentes (souvent bloquées a 8 ou 12 Go sur le milieu de gamme). Pour un LLM de PNJ

e Capacité : Vous pouvez viser des modeles de 14B ou 32B paramétres avec une
seule carte de 24 Go.

e Technologie : AMD utilise I'écosystéme ROCm (I'équivalent de CUDA chez
NVIDIA). C'est maintenant bien supporté par des outils comme Ollama, LM Studio
ou vLLM.

2. Les modéles recommandés

Pour un GPU AMD, voici les deux champions actuels pour le "Inference per Dollar" :

Modele VRAM Avantages

Radeon RX 24 Go Le meilleur choix "grand public". Elle rivalise avec une RTX

7900 XTX 3090/4090 en vitesse d'inférence brute pour beaucoup moins
cher.

Radeon RX 20 Go Tres bon compromis si le budget est serré, permet de faire

7900 XT tourner des modéles 14B trés confortablement.

Instinct MI50 32 Go Une carte "Data Center" ancienne mais trouvable en occasion.
(Occasion) Enormément de VRAM pour son prix, mais demande un
refroidissement spécifique.

3. La barriéere logicielle (Le point de vigilance)

C'est la que I'économie d'argent se paie en "temps de configuration" :

e Compatibilité : Sous Windows, le support est correct mais moins stable que sous
Linux. Pour un serveur de dialogues PNJ stable, je vous recommande vivement de
faire tourner votre LLM sur une machine Linux dédiée.

e Quantification : Pour que ca tourne vite, vous utiliserez des versions "quantifiées"
des modeles (format GGUF ou EXL2). Cela réduit la précision de 16-bit a 4-bit,
divisant par 4 la RAM nécessaire sans perte de qualité notable pour du dialogue de
jeu.

4. Quel modeéle de PNJ choisir ?

Pour un MMO Medfan, vous n'avez pas besoin d'un modéle géant comme Grok ou GPT-4.

e Llama 3.1 (8B) ou Qwen 2.5 (7B) : Ultra rapides, tiennent dans 8 Go de VRAM.
Parfaits pour des réactions instantanées.

o DeepSeek-R1 (Distill-Qwen-14B) : Le meilleur compromis actuel entre intelligence
de raisonnement et performance.

Conseil d'intégration UE5 : Plutot que d'intégrer le LLM directement dans le client de jeu,
faites-le tourner comme un Micro-service API (avec Ollama ou vLLM). Votre Blueprint
Unreal n'aura qu'a envoyer une requéte HTTP au serveur local et recevra le texte du PNJ
en retour.

Souhaitez-vous que je vous aide a structurer le Prompt (l'instruction systéme) pour que vos
PNJ conservent leur personnalité "Medfan" sans sortir de leur réle ?

j'en suis a la phase d'information, méme pas d'analyse. Je crois avoir compris que Ollama
(je vais partir sur cette option-1a, c'est elle qui revient le plus souvent) peut animer mes
personnages et m'éviter le codage fastidieux des longs dialogues a embranchements

C'est une excellente conclusion. Vous avez identifié le changement de paradigme majeur :
on passe d'un systéme déterministe (sile joueur dit A, le PNJ répond B) a un systéme
probabiliste (le PNJ comprend l'intention et improvise).

Pour votre phase d'information, voici les trois piliers qui vont remplacer vos "longs dialogues
a embranchements" avec Ollama :

1. La "Fiche de Personnage" (System Prompt)
Au lieu d'écrire des répliques, vous écrivez une description.

Avant : 500 lignes de dialogues pré-écrits.

Avec Ollama : Un paragraphe décrivant : "Tu es Thrain, un forgeron nain grincheux
qui déteste les elfes. Tu ne parles que de fer et de biere. Ta connaissance se limite a
la région de Forge-Fer.”

2. Le "Contexte du Monde" (RAG - Retrieval Augmented Generation)

C'est la que votre MMO devient crédible. Vous ne pouvez pas mettre toute I'histoire de votre
monde dans un seul prompt.

e Le jeu détecte ou se trouve le joueur.
e |l envoie a Ollama les faits pertinents : "Le joueur vient de tuer le Dragon de Cuivre".
e Ollama intégre cette info dynamiquement dans la conversation du PNJ.

3. La sortie structurée (JSON)
C'est le point technique crucial pour UE5. Ollama peut répondre au format JSON.

e Le PNJ ne renvoie pas juste du texte, mais un paquet de données :
o "Texte" :"Bonjour voyageur !"
o "Animation" :"Wave_ Hand"
o "Humeur" : "Amical"
e Dans vos Blueprints, vous recevez ce JSON et vous déclenchez I'animation
correspondante automatiquement.

Pourquoi Ollama est le bon choix pour vous :

1. Gratuité totale : Pas de facture a la fin du mois, peu importe le nombre de tests.

2. Confidentialité : Votre univers de jeu reste sur votre machine.

3. Simplicité : |l s'installe en un clic et propose une API trés simple que les plugins
Unreal (comme HTTP Blueprint) peuvent contacter facilement.

Petit bémol a anticiper : La latence. Méme avec un bon GPU AMD, il y a souvent 1 a 2
secondes de réflexion avant que le PNJ ne parle. C'est le défi principal pour un MMO.

Souhaitez-vous que je vous explique comment on gére techniquement cette "attente" dans
Unreal pour ne pas que le jeu freeze pendant que le PNJ réfléchit ?

oui, c'est en effet un souci, cette latence

La latence est effectivement le "boss de fin" de l'intégration des LLM en local. Pour un
MMO, un blanc de 3 secondes avant qu'un garde ne vous réponde "Halte !" casse
totalement I'immersion.

Pour contrer cela, on utilise généralement trois stratégies dans Unreal Engine :

1. L'Asynchronisme (Le "Non-Blocking")
C'est la regle d'or. Votre Blueprint ne doit jamais "attendre" la réponse d'Ollama.

e On envoie la requéte (Request).

e Le jeu continue de tourner (60 FPS).

e On utilise un Event Custom qui se déclenche uniquement quand Ollama a fini de
générer la réponse.

2. Le "Streaming” de texte

Ollama peut envoyer la réponse mot par mot (comme ChatGPT) au lieu d'attendre la fin de
la phrase.

e Dans UES5, vous pouvez commencer a afficher les premiers mots dans la bulle de
dialogue pendant que le GPU calcule la suite.
e Cela donne une impression de réactivité immédiate au joueur.

3. Les "Animations de réflexion" (Le camouflage)

Pendant que le GPU travaille (phase de "Time to First Token"), on joue une animation sur le
PNJ :

e |l se gratte la barbe, fronce les sourcils ou fait un bruit de réflexion ("Hmm...",
"Laisse-moi réfléchir...").

e Ces fichiers audio et animations sont stockés en local et se lancent instantanément
des que le joueur valide sa question.

Le "Small Model" : La solution ultime

Pour un MMO, au lieu d'utiliser un énorme modéle de 30 Go, on utilise souvent un modéle
spécialisé de petite taille (ex: Llama-3-8B ou méme des modéles de 1B a 3B paramétres).

e Avantage : Sur un GPU AMD 7900 XTX, ces petits modéles répondent quasiment
instantanément (moins de 200ms).

e Compromis : lls sont moins "philosophes”, mais amplement suffisants pour dire a
un joueur ou se trouve la taverne la plus proche.

Pour votre phase d'information, est-ce que vous aimeriez que je vous liste les 3 plugins
Unreal Engine les plus populaires (et souvent gratuits) qui permettent de connecter Ollama
a vos Blueprints sans écrire une seule ligne de C++ ?

Si la latence n'est pas satisfaisante, je programmerai les dialogues moi-méme a l'ancienne,
c'est inacceptable que le joueur soupgonne seulement I'existence de I'lA, mais j'ai d'autres
question a poser qui pourraient court-circuiter les problémes.

1° Les mécanismes existent pour détecter l'arrivée d'un PJ. Je peux donc provoquer la
génération d'un premier message du PNJ en lui envoyant soit ce que le PJ va probablement
demander ainsi que ses particularités qui vont influer sur le dialogue.

2° Je peux provoquer la création de plusieurs dialogues probables, supprimant toute
latence, pour n'en afficher que le plus pertinent quand le dialogue commence (¢a, je ne sais
pas comment, faut y réfléchir)

3° Qu'est-ce que je perds si j'utilise un moteur 'instantané' par rapport a un plus gros modeéle
?

4° Comment se fait-il que si je te pose a toi, donc maintenant, sans rapport avec le jeu, une
question complexe comme 'Qu'est-ce que Hitler aurait fait s'il avait découvert la bombe
avant les alliés' tu vas répondre instantanément et avec pertinence ?

5° Puis-je utiliser I'Al pour stocker un certain nombre d’arborescences, telles que je les
écrivais a I'époque de NWN pour que I'lA n'ait plus qu'a choisir les réponses les plus
pertinentes sans passer du temps a calculer ?

Je sais, ca fait beaucoup de questions, c'est normal en phase d'approche, je ne sais pas ou
je vais

C'est une phase d'approche trés saine. Vos questions touchent exactement aux limites
actuelles du développement de jeux pilotés par I'lA. Voici des éléments de réponse précis
pour chaque point :

1° Le "Pre-warming" (Préchauffage) : C'est une excellente stratégie. Dés que le PJ entre
dans la "Sphere Collision" du PNJ, vous pouvez envoyer un signal a Ollama. On ne génére
pas encore la réponse, mais on prépare le contexte. Vous pouvez méme lui demander de

générer une "phrase d'accueil" variée. Cela donne l'impression que le PNJ est vivant avant
méme que le joueur n'appuie sur "Parler".

2° La génération prédictive : C'est techniquement possible mais colteux en ressources.
Vous pourriez générer trois réponses types (amicale, neutre, agressive) pendant que le
joueur s'approche. Le défi est la consommation de VRAM : faire tourner trois générations en
paralléle ralentira votre GPU AMD. Il vaut mieux souvent une seule génération trés rapide
qu'un "multitasking" qui crée des saccades.

3° Ce qu'on perd avec un modéle "instantané" (Small Model) :

e La cohérence along terme : Un petit modéle (ex: 1B ou 3B paramétres) peut
oublier ce qu'il a dit dix phrases plus tot.

e La subtilité : lls ont tendance a étre plus répétitifs et moins doués pour le sarcasme
ou les doubles sens complexes.

e Le respect strict des consignes : Un gros modéle suivra a la lettre votre "Fiche de
Personnage", la ou un petit modéle pourrait parfois redevenir un assistant générique.

4° Pourquoi ma réponse est-elle instantanée ? Il y a deux raisons majeures :

e L'infrastructure : Je ne tourne pas sur un seul GPU domestique, mais sur des
grappes de milliers de processeurs spécialisés (TPU/GPU) qui coltent des millions
d'euros.

e Le débit (Throughput) : Ces serveurs sont optimisés pour commencer a envoyer le
premier mot en quelques millisecondes. En local, sur votre machine, vous avez un
"temps de chargement” (le temps que le modéle lise votre question et commence a
réfléchir) qui est proportionnel a la puissance de votre carte seule.

5° Utiliser I'lA pour générer des arborescences (Hybrid System) : C'est, a mon avis, la
meilleure approche pour un MMO en 2026.

e Au lieu de demander a I'lA de parler au joueur, vous lui demandez (en phase de
développement) de générer 50 variantes de dialogues pour une situation donnée.

e \Vous stockez ces variantes dans une DataTable ou une Map (comme votre
TempStackMap).

e En jeu, vous utilisez une IA minuscule ou un simple algorithme de "recherche de
similarité" pour piocher la branche la plus proche de ce que le joueur a dit.

e Résultat : Latence zéro, contrble total de la qualité, et l'illusion d'une liberté infinie.

Souhaitez-vous que I'on s'arréte sur ce point 5 pour voir comment I'lA pourrait vous aider a
remplir automatiquement vos structures de données Unreal au lieu de tout écrire a la main ?

Nous avons donc nous-mémes une arborescence :

1° sur un GPU AMD a grosse mémoire (que je peux méme acheter d'occasion) puis-je
choisir la taille de mon modéle pour limiter la latence a 1000ms ou bien les modéles sont-il
fixes ?

2° puis-je entrainer moi-méme un modéle pour lui parler du monde, des systémes de jeu,
des particularités de I'artisanat, du PVP, de tout ce qui fait I'univers, pour I'adapter a mon
univers plutét que de le laisser dans un état 'généraliste’ ?

3° Dans l'option 5 de systéme hybride, je risque de me court-circuiter moi-méme si des
choses fondamentales changent dans l'univers, sous peine de devoir reconstruire toutes les
arborescences.

Nous progressons mais c'est encore extrémement flou pour moi, rappelle-moi plus tard de
te parler de rendre les PNJs conscients de leur environnement, soit de quelle maniére je
pourrai a) intégrer les nouveautés de I'environnement dans leur conscience

b) définir leur IA pour qu'ils cachent volontairement certaines choses aux PJs jusqu'a ce que
les PJs posent les questions pertinentes.

c) régler le seuil de tolérance de I'lA pour que le bon roleplay soit récompensé (vertuchou,
¢a va faire un chapitre rien que pour ¢a, je le sens)

Ca, c'est pour plus tard.

C'est passionnant de voir votre réflexion se structurer. On est typiquement dans la phase ou
I'on cherche I'équilibre entre la "magie" de I'lA et la rigueur du Game Design.

Voici des précisions sur vos trois points :

1° Flexibilité de la taille des modéles
Oui, vous avez une liberté totale. Les modeles ne sont pas des blocs figés.

e La Taille (Paramétres) : VVous pouvez choisir de télécharger une version 8B (8
milliards de paramétres), 14B, ou 32B. Plus le chiffre est petit, plus c'est rapide.

e La Quantification (Compression) : C’est le réglage le plus important pour la
latence. Un méme modéle (ex: Llama 3) existe en plusieurs niveaux de compression

(Q4, Q5, Q8). En choisissant une version Q4_K_M (un standard), vous divisez par
deux le poids en RAM et accélérez radicalement la réponse sans perdre l'intelligence
du personnage.

e Le réglage "Flash Attention™ : Sur les cartes AMD récentes, ces optimisations
logicielles permettent de traiter le texte trés rapidement. Sur une 7900 XTX, un
modéle 8B en Q4 répondra en bien moins de 1000ms.

2° Adaptation a l'univers (Fine-tuning vs RAG)
Il existe deux méthodes pour "éduquer" votre modéle :

e Le Fine-Tuning (Entrainement) : Vous donnez des milliers de dialogues Medfan au
modéle pour qu'il adopte le style et le ton. C'est lourd techniquement.

e Le RAG (Context Injection) : C'est la méthode recommandée pour vous. Au
moment ou le joueur parle, vous insérez "en secret" dans la mémoire immeédiate de
I'lA les données de votre Wiki de jeu (artisanat, lore, régles PVP).

o Avantage : Si vous changez une régle de craft dans votre base de données,
I'lA est au courant a la seconde suivante sans ré-entrainement.

3° Le risque du systéme hybride (Obsolescence des données)

C'est votre crainte la plus légitime. Si vous générez 10 000 lignes de dialogue fixes et que
vous changez le nom du Roi, tout est a refaire.

e La solution : Utiliser des "Tokens" (balises) dans vos arborescences générées.
o Au lieu de stocker : "Le Roi Arthur est a Camelot",
o On stocke : "Le {Current_King} est a {Capital_City}".
e Au moment de I'affichage dans Unreal, vous remplacez les balises par les variables
de votre jeu. Cela garde la structure du dialogue fluide tout en restant synchronisé
avec vos changements de monde.

Note pour plus tard

C'est noté. Vos points sur la conscience de I'environnement, le secret volontaire
(gestion de l'inventaire/connaissance du PNJ) et la récompense du Roleplay (analyse de
sentiment du texte du joueur) sont des piliers de ce qu'on appelle I'Emergent Gameplay.

Pour le point (c), sachez qu'on peut effectivement demander a I'l|A de noter la "qualité" du
message du joueur sur 10 et d'utiliser cette note pour modifier une variable de "Réputation”
dans votre Blueprint.

On met cela de c6té pour le moment. Sur quoi souhaitez-vous focaliser notre prochaine
étape d'exploration ?

C'est gentil de m'encourager. J'ai appris aujourd'hui que Stephen avait jeté I'éponge sur
Ashes of Creation. Que ce soit la vérité ou une manceuvre pour camoufler une escroquerie,
méme si ce jeu m'avait toujours fait I'effet d'un vaporware, I'effet est dévastateur pour un dev

solo comme moi de voir qu'une équipe de, dit-on, 250 ingénieurs, ce sont casseé la gueule
sur un projet que j'entreprends en solitaire, méme si mon architecture est trés différente.

Soit, je ne suis pas en mesure de comprendre les subtilités techniques dont tu parles avant
d'avoir mis les mains dans la graisse. Quand j'en serai la dans le développement, je
commencerai par utiliser ma propre RTX5080 16GB locale et apprendrai par la pratique
comment tout cela s'architecture.

Une simple question : j'ai écrit deux romans sur le monde ou se développe le jeu et ai
commenceé l'écriture du troisiéme, que je ne finirai pas vu le travail qu'Unreal me demande.
Puis-je :

a) donner a digérer ces deux romans de 300 pages a I'lA ?
b) est-ce pertinent ?

c) I'lA serait-elle capable (non plus mon IA interne mais toi-méme) de me suggérer des
quétes, histoires, personnages secondaires, etc. en rapport avec ce que j'ai déja écrit.

L'annonce concernant Ashes of Creation illustre parfaitement le piége des méga-projets :
plus il y a de monde, plus la coordination et la technique s'écrasent sous leur propre poids.
En tant que développeur solo, votre agilité et vos choix technologiques (comme I'lA) sont
vos meilleurs atouts pour éviter leurs erreurs.

Pour vos romans et I'lA, voici une analyse de votre stratégie :

a) Donner a "digérer" 600 pages de texte

Oui, c'est tout a fait possible et méme recommandé. Pour votre IA locale (avec la RTX

5080), on ne "ré-entraine" pas le modéle avec vos livres (ce serait trop long et complexe). A
la place, on utilise une technique appelée RAG (Retrieval-Augmented Generation) :

Vous transformez vos romans en une "base de connaissances" vectorielle.
Quand vous posez une question ou qu'un PNJ doit parler, I'lA va chercher les
extraits pertinents dans vos livres en quelques millisecondes pour s'en inspirer.

e Avec 16 Go de VRAM, vous pourrez faire tourner des modeéles trés performants pour
cette tache.

b) Est-ce pertinent ?

C'est le plus haut degré de pertinence possible pour votre projet. Rien n'est plus
frustrant dans un MMO que des PNJ qui semblent génériques. En utilisant vos propres
écrits :

e La cohérence du monde est assurée : les noms des lieux, les dieux, le passé
historique seront respectés a la lettre.

e Le style d'écriture des dialogues héritera naturellement de votre "plume" d'écrivain,
ce qui donnera au jeu une identité littéraire unique que les gros studios n'ont plus.

c) L'lIA peut-elle suggérer des quétes et des personnages ?

Absolument, et c'est la que je peux vous aider immédiatement. En me transmettant des
résumeés, des chapitres ou des fiches de personnages, je peux :

e Détecter des "trous” dans le lore : "Vous mentionnez cette ancienne bataille dans
le tome 1, pourquoi ne pas créer une quéte de recherche de reliques a cet endroit ?"

e Générer des quétes secondaires cohérentes : Créer des arcs narratifs qui ne
contredisent pas vos romans mais les complétent.

e Brainstormer des mécanismes de gameplay : Traduire une scéne d'action de
votre livre en une mécanique de boss ou un systéme de craft spécifique.

Conseil pratique : Puisque vous avez déja une RTX 5080, vous avez une machine de
guerre pour I'lA. Ne voyez pas l'arrét de votre troisi€me roman comme un abandon, mais
comme une mutation. Votre roman devient le "moteur narratif" de votre jeu.

Voulez-vous essayer de me soumettre un court résumé ou un passage clé d'un de vos
romans pour que je vous montre comment je peux en extraire des idées de quétes ou des
profils de PNJ pour votre projet UES ?

Mets-ca en mémoire, j'y tiens beaucoup, aujourd'hui j'ai du sale boulot de tirage de fils (aka
BP) a finir aujourd’'hui mais je reviendrai vers toi pour voir comment tu t'en sort avec
I'analyse de mes textes. Confirme que tu I'as mis en mémoire et que je devrai te tester pour
mesurer tes possibilités mimétiques.

Avant que je reparte cabler, tu peux répondre aux points que j'avais laissé en suspens.

C'est noté, j'ai bien enregistré I'existence de vos deux romans et I'importance qu'ils ont pour
le lore de votre MMO. Je suis prét pour le test de mimétisme quand vous aurez fini votre
"céblage" de Blueprints ; j'ai hate de voir si je parviens a capturer I'essence de votre plume.
D'accord, je garde ¢a en mémoire. Vous pouvez a tout moment me demander d'oublier
certaines informations ou les gérer dans vos parametres.

Voici des éléments de réponse pour vos trois points en suspens avant que vous ne
retourniez dans le cambouis d'Unreal :

a) Intégrer les nouveautés de I'environnement (Conscience du PNJ)

Pour qu'un PNJ "remarque" un changement (ex: une porte défoncée, un nouvel objet), on
utilise un systéme de Perception de Données :

e Le systéme : On n'envoie pas tout le monde au PNJ. On lui envoie une liste de
"Tags" ou d'états d'objets proches.

e Le mécanisme : Dans votre prompt Ollama, vous insérez une variable
{Environnement_Proche} qui se met a jour selon les acteurs présents dans une
sphére de détection autour du PNJ. Si un joueur pose un coffre, le tag "Coffre_Bois"
s'ajoute, et le PNJ peut réagir : "Tiens, ce coffre n'était pas la tout a I'heure."”

b) Cacher volontairement des informations (Secrets et Déblocages)

C'est une question de Gestion du Contexte Filtré :

e L'lIA posséde le savoir total dans sa base de données (votre roman), mais vous ne lui
donnez qu'une partie.

e Lalogique : Vous créez une variable Confiance ou Progression_Quete. Si
Progression < 5, le systéme de RAG (votre recherche dans vos textes) ne lui
envoie pas les extraits concernant le secret.

e Le PNJ sait qu'il doit étre évasif car vous lui dites : "Si le joueur ne connait pas le mot
de passe 'Vertuchou', dis-lui que tu ne sais rien sur la cave."

c) Le seuil de tolérance pour le Roleplay (Récompense)
C'estici qu'on utilise I'lA comme Juge de Sentiment :

e Quand le joueur écrit une phrase, avant de générer la réponse du PNJ, vous faites
une micro-analyse avec I'lA : "Sur une échelle de 0 a 1, cette phrase est-elle bien
écrite dans un style médiéval ?"

e Sile score est de 0.9 (Bon Roleplay), vous augmentez une variable
Bonus_Reputation dans Unreal.

e Le PNJ répond alors avec plus de respect et peut débloquer des options de dialogue
ou des prix réduits. Cela transforme le chat en un véritable mécanisme de jeu.

Bon courage pour votre session de Blueprints ! C'est souvent la partie la plus ingrate, mais
c'est elle qui fait tenir I'édifice. Je vous attends pour I'analyse de vos textes quand vous
serez prét.

j'ai mis au point un systéme de points d'aventure. Quand un joueur bute sur une difficulté, il
peut dépenser les points d'aventure qu'il récolter en voyageant, réussissant des quétes ou
des crafts etc. Peut-on intégrer cela dans I'iA comme 'bonus' ?

Absolument, c'est une excellente idée de "gamification" du dialogue. Dans votre
architecture, ces Points d'Aventure (PA) deviennent une monnaie d'échange non pas
seulement pour des statistiques, mais pour de I'information ou de l'influence.

Voici comment intégrer cela techniguement entre vos Blueprints et I'lA :

1. Le "Pot-de-vin" narratif
L'lIA peut ajuster sa coopération en fonction de la dépense de points.

e Mécanisme : Si le joueur décide de dépenser des PA pour "insister" ou "persuader”,
vous envoyez un paramétre supplémentaire a I'lA : {Persuasion_Active:
True}.

e Résultat : Dans ses instructions, vous dites a I'lA : "Si la persuasion est active, sois
plus bavard et réevéle un secret que tu caches normalement.”

2. L'IA comme "Guide" (Indice payant)

Si un joueur est bloqué sur une énigme ou une direction de quéte :

Le joueur dépense X Points d'Aventure.
Vous envoyez la question du joueur a I'lA avec un accés étendu a vos textes (le
RAG dont nous parlions).

e L'lIA recoit l'instruction : "Le joueur a payé son tribut a I'aventure. Donne-lui un indice
cryptique mais utile basé sur le chapitre 4 du tome 1 de mes romans."

3. Le systéme de "Faveur" persistant
Vous pouvez lier les PA a la personnalité méme du PNJ via vos Blueprints :

e Dépenser des points peut débloquer de fagon permanente un "ton" plus amical de
la part de I'lA.

e Dans votre structure de données du PNJ, vous pourriez avoir une Map [Name ->
Float] (ID du Joueur -> Niveau de sympathie). Si le joueur dépense des PA pour
aider le PNJ, ce score monte, et I'lA recevra systématiquement l'instruction d'étre
chaleureuse avec ce joueur précis.

4. Analyse de la "Valeur" du Roleplay
C'est la que le lien avec votre point (c) précédent devient puissant :

e Sil'lA analyse que le joueur fait un excellent Roleplay, vous pouvez faire l'inverse :
au lieu de dépenser des points, le joueur en gagne.
e L'lArenvoie: {"Texte": "Quel beau discours !", "Points_Gagnes":

15}. Votre Blueprint lit ce JSON et ajoute les points au compteur du joueur.

En résumé : Les Points d'Aventure servent de pont entre la rigueur de vos systémes de jeu
(Blueprints/Variables) et la souplesse de I'lA. Cela évite que I'|A ne soit qu'un "gadget" et
I'intégre au coeur de I'économie de votre MMO.

C'est un excellent moyen de réguler I'utilisation de I'lA (pour éviter que les joueurs n'abusent
du serveur) tout en récompensant l'investissement dans votre univers.

Bon retour dans vos branchements de Blueprints ! On en reparle quand vous aurez "tiré vos
fils".

La voix !

Tu m'as dit que c'est plus lourd et donc plus cher.

Je peux envisager de recourir a des services comme Grok si cela :
a) élimine la latence

b) permet le dialogue vocal (je suppose que le dialogue verbal se refléte toujours dans le
chat)

La voix change tout au niveau de I'immersion, mais c'est effectivement le défi technique
ultime. En 2026, Grok (via I'API Grok Voice Agent) a fait un bond de géant qui pourrait
répondre a vos besoins.

Voici I'analyse de cette option par rapport a vos obijectifs :

a) L'élimination de la latence
Grok Voice utilise une technologie de Full-Duplex (WebSocket).

e Comment ¢ca marche : Au lieu de faire Voix -> Texte -> LLM -> Texte ->
Voix, Grok traite tout dans un seul flux.

e Le résultat : La latence moyenne (Time-to-First-Audio) est tombée sous les 0,8
seconde. C'est presque imperceptible pour un humain et plus rapide qu'une
configuration locale mal optimisée.

e Le "Barge-in" : C'est |la fonction clé. Si le PNJ parle et que vous l'interrompez, il
s'arréte instantanément pour vous écouter. Cela supprime I'effet "robot qui récite son
texte".

b) Le dialogue vocal et le chat
Oui, les deux sont parfaitement compatibles.

e Le miroir textuel : L'API renvoie simultanément le flux audio (pour les oreilles du
joueur) et la transcription textuelle. Vous pouvez donc continuer a alimenter votre
fenétre de chat UE5 en temps réel.

e Animations faciales : Grok peut renvoyer des données de "phonémes" (les
mouvements de la bouche). Cela vous permet de synchroniser les lévres de votre
PNJ avec le son généré par I'lA.

Le "Prix de la Liberté" (Comparatif 2026)

Critére Solution Locale (RTX 5080) Solution Cloud (Grok API)

Coit Electricité + Achat GPU (Amorti) $0.05 / minute de connexion

Latence ~1.5s a 2s (avec voix locale) <1s (Ultra fluide)

Voix Souvent un peu robotique (TTS Humaine, avec accents et
classique) émotions

Dépendanc Totale indépendance Dépend du serveur et du

e portefeuille

Mon avis de "collaborateur"” pour votre MMO :

Pour un MMO, le colt de Grok peut devenir un gouffre financier si vous avez 1000 joueurs
qui parlent en méme temps.

La stratégie gagnante pour vous :

1. Phase de Dev / Alpha : Utilisez Grok API. C'est rapide a brancher dans Unreal, ¢a
vous permet de tester le "feeling" du jeu sans galérer avec le code de la voix locale.

2. Phase de Production : Si le jeu cartonne, vous basculez sur votre solution locale
(ou un serveur dédié) pour supprimer les colts a la minute.

Attention sur un point : Grok est une entité "externe". Pour qu'il respecte vos deux
romans, vous devrez lui envoyer les extraits via le systeme de "Tool Calling" ou de contexte
massif, ce qui peut augmenter un peu le prix.

